Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
fst(0, Z) → nil
fst(s, cons(Y)) → cons(Y)
from(X) → cons(X)
add(0, X) → X
add(s, Y) → s
len(nil) → 0
len(cons(X)) → s
Q is empty.
↳ QTRS
↳ DirectTerminationProof
Q restricted rewrite system:
The TRS R consists of the following rules:
fst(0, Z) → nil
fst(s, cons(Y)) → cons(Y)
from(X) → cons(X)
add(0, X) → X
add(s, Y) → s
len(nil) → 0
len(cons(X)) → s
Q is empty.
We use [23] with the following order to prove termination.
Recursive path order with status [2].
Quasi-Precedence:
from1 > [s, cons1] > [fst2, nil]
add2 > [s, cons1] > [fst2, nil]
len1 > 0 > [fst2, nil]
len1 > [s, cons1] > [fst2, nil]
Status: from1: multiset
len1: multiset
fst2: multiset
add2: multiset
0: multiset
s: multiset
cons1: multiset
nil: multiset